Reprinted from the AUSTRALIAN JOURNAL OF CHEMISTRY

THE EFFECT OF PRESSURE ON THE CONDUCTANCE OF SOME IODIDES IN ACETONE AND 2-METHYLPROPAN-1-OL

By A. H. EWALD* and J. A. SCUDDER*

[Manuscript received April 22, 1970]

Abstract

The conductance of 4-methoxycarbonyl-N-methylpyridinium iodide was measured in acetone at $293 \cdot 1$, $303 \cdot 1$, and $313 \cdot 1^{\circ}$ K and in 2-methylpropan-1-ol (Bu¹OH) at $303 \cdot 1^{\circ}$ K at pressures up to 3 kbar. Similar measurements were made on solutions of sodium iodide in Bu¹OH at $298 \cdot 1$ and $308 \cdot 1^{\circ}$ K. Limiting conductances and ion pair association constants are derived and show incomplete dissociation of the salts at all concentrations.

The conductance of solutions of 4-methoxycarbonyl-*N*-methylpyridinium iodide (mmpI) in acetone and 2-methylpropan-1-ol (BuⁱOH) was measured over a range of temperatures and pressures in order to determine the activity coefficient and association constants of this salt in connection with a study of the effect of pressure on the charge-transfer complexes formed by it.¹ Similar measurements on sodium iodide in BuⁱOH were of interest in a study of charge-transfer complexes formed by iodide ions with neutral molecules.² The limiting equivalent conductance, the association constant, and the activity coefficient were calculated from the measurements by means of the Fuoss conductance equation,³ and the activation parameters for conductance were evaluated in terms of the transition state theory.⁴

The results for mmpI parallel those recently obtained by Adams and Laidler⁵ for tetra-n-propylammonium iodide (Pr_4NI) in acetone. The measurements on sodium iodide in Bu⁴OH show that this salt is only partly dissociated in this solvent.

EXPERIMENTAL

Acetone (BDH Analar) was purified by the method recommended by Weissberger,⁶ fractionally distilled, and stored in dark bottles over MgSO₄. Immediately before use it was redistilled (b.p. $329 \cdot 0-329 \cdot 2^{\circ}$ K), degassed in a vacuum, and subsequently handled only under dry nitrogen. Density and viscosity data required in the calculations were taken from

* Division of Applied Chemistry, CSIRO Chemical Research Laboratories, Chemistry Department, University of Sydney, N.S.W. 2006.

- ¹ Ewald, A. H., and Scudder, J. A., unpublished data.
- ² Scudder, J. A., M.Sc. Thesis, University of Sydney, 1970.
- ³ Fuoss, R. M., and Accascina, F., "Electrolytic Conductance." pp. 195, 235 et seq., 268. (Interscience: New York 1959.)
- ⁴ Brummer, S. B., and Hills, G. S., Trans. Faraday Soc., 1961, 57, 1816.
- ⁵ Adams, W. A., and Laidler, K. S., Can. J. Chem., 1968, 46, 1977.
- ⁶ Weissberger, A., "Techniques of Organic Chemistry." Vol. 7. (Interscience: New York 1956.)

Aust. J. Chem., 1970, 23, 1939-45

FEB 24 1971

Timmermans⁷ and their pressure dependence was calculated from the data of Bridgman.⁸ The values of the dielectric constants at appropriate temperatures and pressures were calculated by the Owen-Brinkley equation⁹ for which the parameters were obtained from the data of Hartmann *et al.*¹⁰

2-Methylpropan-1-ol (Unilab Laboratory Reagent) was dried over K_2CO_3 and fractionally distilled. The fraction boiling between 380 and 381°K was stored over molecular sieves and was redistilled immediately before use and handled under dry nitrogen. The dielectric constant values were calculated as for acetone using the data of Danforth¹¹ and Owen and Brinkley.⁹ Density and viscosity data were obtained from Timmermans⁷ and Bridgman.⁸

The atmospheric pressure values of the solvent properties and the parameters for the Owen–Brinkley equation for the dielectric constant are given in Table 1.

T	ABLE	1

OTTATT TROTATO (T DU	OLVENT	PROPERTIES	(1	bar
----------------------	--------	------------	----	-----

A and B are the constants in the Owen-Brinkley equation $1 - D_1/D_P = AD_1 \log\{(B+P)/(B+1)\}$

Solvent	Temp. (°K)	Mol. Vol. (l. mol ⁻¹)	Viscosity (cP)	Diel. Const. D	$10^{2}A$	B (bar)
Bu ¹ OH	298.1	0.0927	3.39	18.0	1.398	1148
	303 · 1	0.0932	2.88	17.3	1.457	1048
	308.1	0.0936	$2 \cdot 44$	16.6	1.522	949
Acetone	293.1	0.0735	0.326	$21 \cdot 22$	1.123	674
	303 · 1	0.0745	0.301	20.23	1.218	637
	313.1	0.0756	0.277	19.26	$1 \cdot 277$	575

4-Methoxycarbonyl-N-methylpyridinium iodide was prepared by esterifying isonicotinic acid with methanol and quaternizing the ester with MeI.* The crude product was recrystallized from ethanol-benzene. NaI was recrystallized from conductance water and dried in vacuum.

Solutions were made up by weighing, using a microbalance where necessary. The high pressure conductivity apparatus has been described.¹ The conductivity of the solvents was negligible compared with that of the solutions.

RESULTS

The equivalent conductance at infinite dilution Λ^0 , the activity coefficient f, and the degree of dissociation γ , were found by a parameter fit of equation (1) to conductances Λ measured at various concentrations, c. These ranged from 2×10^{-5} to 2×10^{-2} mol l.⁻¹ for mmpI and 1×10^{-4} to 2×10^{-2} for NaI.

$$\Lambda = \Lambda^0 - Sc_i^{\frac{1}{2}} + Ec_i \log c_i + J'c_i - K_A c_i f^2 \Lambda \tag{1}$$

Equation (1), a method of using it, and definitions of the parameters, are given by Fuoss and Accascina.³ The parameters E and J' are functions of the ion size

* We thank Dr W. H. F. Sasse of the Division of Applied Chemistry, CSIRO, for preparing the compound for us.

⁷ Timmermans, J., "Physico-chemical Constants of Pure Organic Compounds." (Elsevier: New York 1950.)

⁸ Bridgman, P. W., "The Physics of High Pressure." (Bell: London 1949.)

⁹ Owen, B. B., and Brinkley, S. R., Phys. Rev., 1943, 64, 32.

- ¹⁰ Hartmann, H., Neumann, A., and Rink, G., Z. phys. Chem., N.F., 1965, 44, 204.
- ¹¹ Danforth, W. E., Phys. Rev., 1931, 38, 1224.

1940